Utilization of Electrical Energy 3340903

www.vishaldevdhar.org Vishal D Devdhar Lecturer Electrical Engineering Department Government Polytechnic, Rajkot

Unit – 4 Electric Traction

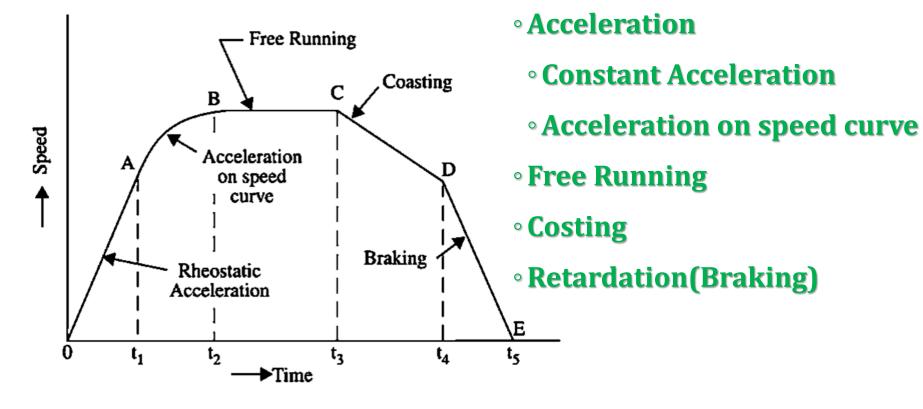
UTILIZATION OF ELECTRICAL ENERGY

Topics

- Requirements of ideal Traction System
- Traction Mechanics: Types of Services, Speed
 Time Curve
- Supply system: DC System, Composite System, Single Phase ac system with low and normal frequency and 3 phase system

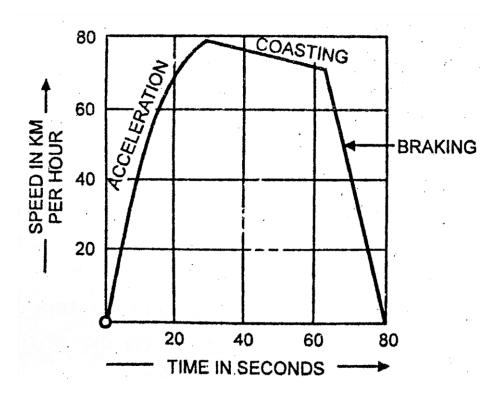
Requirement of Ideal Traction System

- High Starting Torque
- •Self Contained
- Simple Speed Control
- Smooth Acceleration &
 - Retardation
- High Overload Capacity
- Compact In Size


- Low Maintenance
- High Efficiency
- **•No Interference to**
- **Communication Lines**
- Long Life
- Low Cost
- Pollution Free

Traction Mechanics

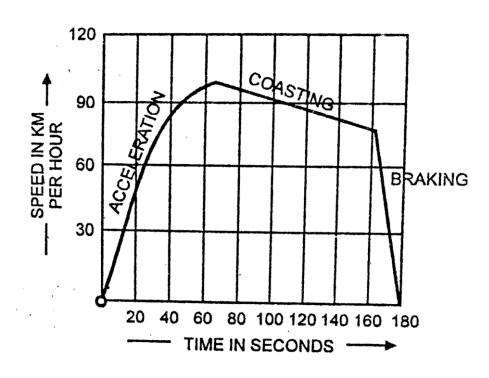
•Speed Time Curve


•Types of Services

 The curve drawn between Speed v/s Time, taking Speed (km/hr) on Y-axis and Time (second or Minute) on X-axis, is known as Speed-Time Curve.

• Typical Speed – Time Curves

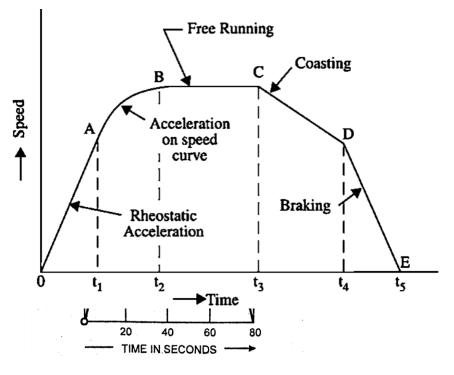
Urban/City Service



• Distance between two stops: Short (about 1km)

- Acceleration:
- 1.5 4 km/h/sec
- Retardation:
 - 3 4 km/h/sec
- Coasting Period:
 - Short
- Free Running:
- NA

• Typical Speed – Time Curves


Suburban Service

- Distance between two stops:
- **1 8 km**
- Acceleration:
 - 1.5 4 km/h/sec
- Retardation:
 - 3 4 km/h/sec
- Coasting Period:
 - **Comparatively long**
- Free Running: NA

• Typical Speed – Time Curves

Main Line Service

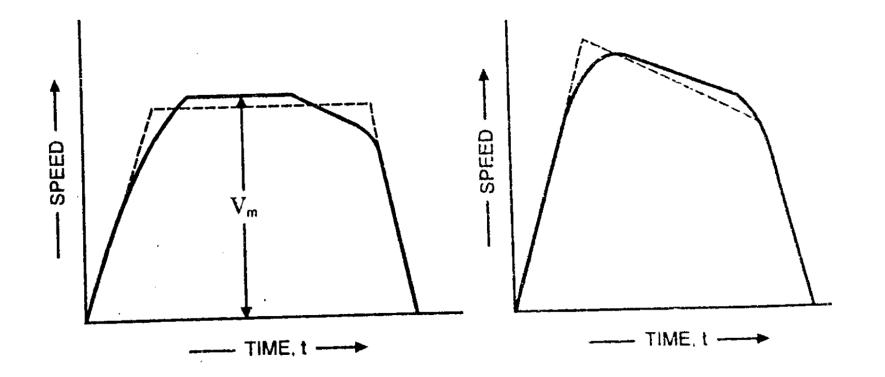
- Distance between two stops:
 - More than 10 km
- Acceleration:
 - 0.6 0.8 km/h/sec
- Retardation:
 - 1.5 km/h/sec
- Coasting Period:
- Long
- Free Running:
 - Long

Terms related to Speed – Time Curve • Crest Speed:

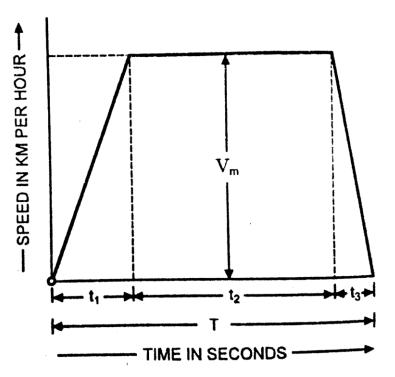
The maximum speed attained by the vehicle during the run is known as Crest Speed.

 $Average Speed = \frac{Distance \ between \ stops}{Actual \ time \ of \ run}$

The mean of the speeds from start to stop, the distance covered between two stops divided by the actual time of run is known as Average Speed.


• Schedule Speed:

•Average Speed:


 $Schedule Speed = \frac{Distance between stops}{Actual time of run + Stop time}$

The ratio of distance covered between two stops divided by the actual time of run including time of stop is known as Schedule Speed.

Simplified Speed – Time Curve

Trapezoidal Speed – Time Curve

Let $\alpha = \text{Acceleration in kmphps}$ $\beta = \text{Retardation in kmphps}$ $V_m = \text{Crest speed in kmph}$ T = Total time of run in seconds.Time for acceleration in seconds, $t_1 = \frac{V_m}{\alpha}$ Time for retardation in seconds, $t_3 = \frac{V_m}{\beta}$

Trapezoidal Speed – Time Curve

Time for free running in seconds, $t_2 = T - (t_1 + t_3) = T - \left(\frac{V_m}{\alpha} + \frac{V_m}{\beta}\right)$

Total distance of run in km,S = Distance travelled during acceleration + distance travelled during free run + distance travelled during braking

$$= \frac{1}{2} V_m \frac{t_1}{3,600} + V_m \frac{t_2}{3,600} + \frac{1}{2} V_m \frac{t_3}{3,600}$$

Substituting $t_1 = \frac{V_m}{\alpha}$, $t_3 = \frac{V_m}{\beta}$ and $t_2 = T - \left(\frac{V_m}{\alpha} + \frac{V_m}{\beta}\right)$ we get
$$S = \frac{V_m^2}{7,200\alpha} + \frac{V_m}{3,600} \left[T - \left(\frac{V_m}{\alpha} + \frac{V_m}{\beta}\right)\right] + \frac{V_m^2}{7,200\beta}$$

or $S = \frac{V_m^2}{7,200\alpha} + \frac{V_m}{3,600} T - \frac{V_m^2}{3,600\alpha} - \frac{V_m^2}{3,600\beta} + \frac{V_m^2}{7,200\beta}$
$$= \frac{V_m T}{3,600} - \frac{V_m^2}{7,200\alpha} - \frac{V_m^2}{7,200\beta} \qquad \dots (11.1)$$

•

Trapezoidal Speed – Time Curve

or
$$\frac{V_m^2}{3,600} \left(\frac{1}{2\alpha} + \frac{1}{2\beta} \right) - \frac{V_m T}{3,600} + S = 0$$

or $V_m^2 \left(\frac{1}{2\alpha} + \frac{1}{2\beta} \right) - V_m T + 3,600S = 0$

This is a quadratic equation for V_m . Substituting $\frac{1}{2\alpha} + \frac{1}{2\beta} = K$, we get

$$KV_{m}^{2} - V_{m}T + 3,600 S = 0$$

or $V_{m} = \frac{T \pm \sqrt{T^{2} - 4K \times 3,600 S}}{2K} = \frac{T}{2K} \pm \sqrt{\frac{T^{2}}{4K^{2}} - \frac{3,600 S}{K}}$

The +ve sign cannot be adopted, as value of V_m obtained by using +ve sign will be much higher than that is possible in practice. Hence –ve sign will be used and, therefore, we have

$$V_m = \frac{T}{2K} - \sqrt{\frac{T^2}{4K^2} - \frac{3,600 \,\text{S}}{K}} \qquad \dots (11.2)$$

From the above equation unknown quantity can be determined by substituting the value of known quantities.

Different Traction System

Non Electric

- Direct Steam Engine Drive
- Direct IC Engine Drive

Electric

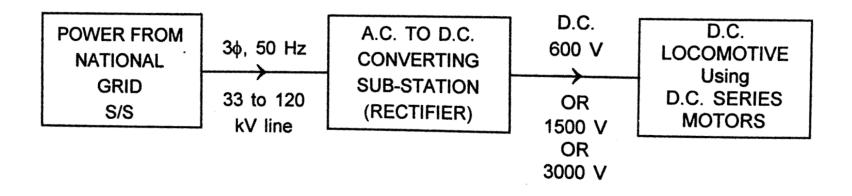
- Steam Electric Drive
- IC Engine Electric Drive
- Petrol Electric Traction
- Battery Electric Drive
- Electric Drive

<section-header></section-header>	Self Contained Locomotive	 Diesel Steam Battery Diesel Electric
	Locomotive obtaining energy from external source	• DC • AC • Dual (AC&DC)

- 600V 750V Suburban (SS : 3 5 km)
- 1500V 3000V Main Line Service (SS : 15 40 km)

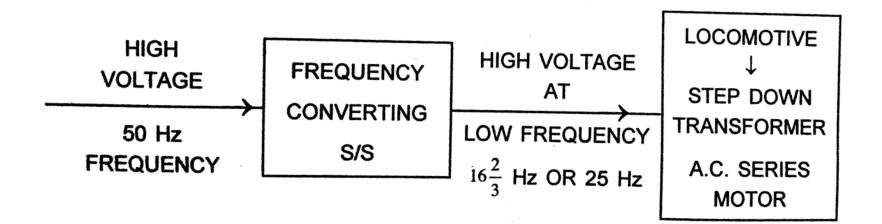
Single Phase AC System

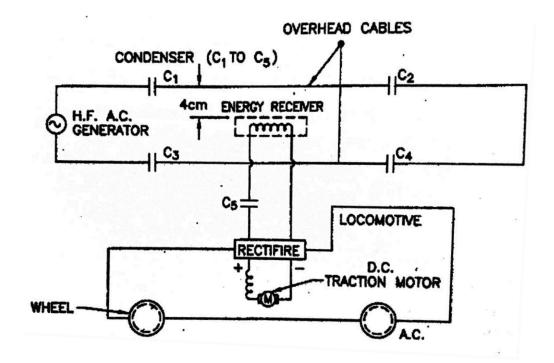
• 15kV - 25kV, 25Hz (SS : 50 - 80 km)


Three Phase AC System

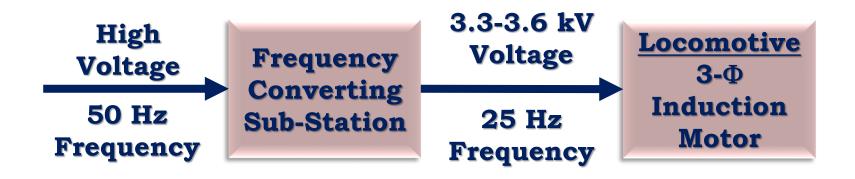
• 3000V – 3600V, 25Hz

Composite System


- KANDO (1Φ 3Φ) System
- 1Φ DC System

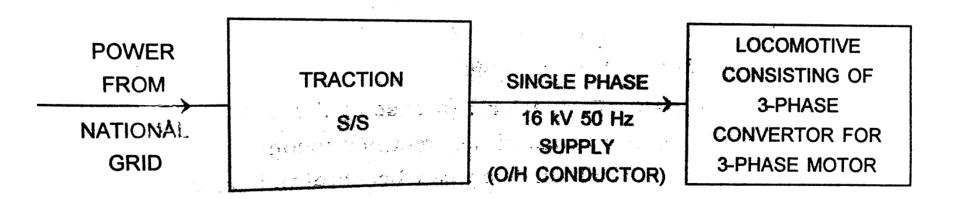

Single Phase Low Frequency AC System

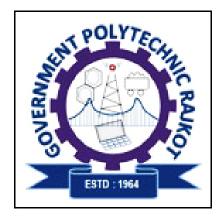
• 15kV - 25kV, 25Hz (SS : 50 - 80 km)



Single Phase High Frequency AC System

• Several Volt, 2.5kHz – 3kHz (Coal Mines)




- KANDO (1Φ 3Φ) System
- 1Φ DC System

Reference

Utilization of Electrical Power & Electric Traction – J B Gupta Publication : S K Kataria & Sons

Thank You

www.vishaldevdhar.org

Vishal D Devdhar

Lecturer

Electrical Engineering Department Government Polytechnic, Rajkot