Distribution & Utilization

of Electrical Power (4340902)

<u>www.vishaldevdhar.org</u>

Vishal D Devdhar

Lecturer

Electrical Engineering Department

Government Polytechnic Rajkot

Power Factor Improvement

- What is Power Factor?
- Disadvantages of low Power Factor
- Effect of Low Power Factor on Various Equipments/Installations
- Cause of Low Power Factor
- Advantages of improved Power Factor
- Methods for Power Factor Improvement
- Location of Power Factor correction equipment

What is Power Factor?

• The cosine of angle between voltage and current in an AC circuit is

known as Power Factor

- Power Factor is a measure of how effectively incoming power is used in electrical system
- The ratio of Real (working) power to Apparent (total) power

Impedance Tringle

What is Power Factor?

Power Tringle

<u>www.vishaldevdhar.org</u>

- Active (Real)Power kW
 - the power that actually powers the equipment and performs useful, productive work
 - $-VI\cos \emptyset$

Reactive Power – kVAR

- the power required to produce a magnetic field to enable real work to be done
- VI sin Ø
- Apparent Power kVA
 - vector sum of Real Power (kW) and Reactive Power (kVAR) and is the total power supplied through the power mains

What is Power Factor?

• Important Relationships

- $(Apparent Power)^2 = (Active Power)^2 + (Reactive Power)^2$

$$-(kVA)^2 = (kW)^2 + (kVAR)^2$$

$$-\cos \phi = \frac{R}{Z}$$

$$-\cos\phi = \frac{Active Power}{Apparent Power} = \frac{kW}{kVA}$$

$$-kVAR = kVA \sin \emptyset = \frac{kW}{\cos \emptyset} \sin \emptyset = kW \tan \emptyset$$

Disadvantages of low Power Factor

- Large kVA Rating of Equipments
- Greater Conductor Size
- More Copper Losses
- Poor Voltage Regulation

$$P = \sqrt{3}V_L I_L \cos \emptyset$$
$$I_L = \frac{P}{\sqrt{3}V_L \cos \emptyset}$$
$$kVA = \frac{kW}{\cos \emptyset}$$

Reduced Handling Capacity of Equipment

Effect of Low Power Factor on Various Equipments/Installations

- Transmission & Distribution:
 - Higher conductor c/s
 - High voltage drop
 - Low efficiency (High Losses)
- Switchgear:
 - Higher rating
 - More contact surface
 - Higher busbar c/s

Low Power Factor

- i. Increased energy costs
- ii. Reduced equipment lifespan
- iii. Reduced system capacity

- Prime Mover:
 - High rating
 - Low Efficiency
- Motors:
 - Overheat
 - Reduced efficiency
 - Lifespan
- Transformers:
 - Overloaded
 - Increased heating
 - Shorter lifespan

- Generators:
 - Produce less power
- Lighting: Flicker Low efficiency Reduced bulb life
- HVAC systems:
 - Operate inefficiently,
 - Increased energy costs
 - Poor power quality

Causes of low Power Factor

- Inductive Loads
 - Induction Motors
 - ARC Furnaces
 - Induction Furnaces
 - Electrical Welding
 - Arc Lamps, Discharge Lamps
- Low load periods
- Unbalanced loads
- Long distribution lines
- Harmonics

Advantages of improved Power Factor

- Reduced energy costs
- Increased capacity
- Longer equipment lifespan
- Improved voltage stability
- Reduced carbon footprint

Methods for Power Factor Improvement

- Capacitor banks
- Synchronous condensers
- Phase Advancer
- Static VAR compensators
- Active power factor correction
- Upgrading equipment
- Operating practices

Advantages

- Low losses
- Low maintenance
- Easy installation no
 - foundation
- Work well in different
 - weather conditions

Disadvantages

- Short service life
- Damaged by voltage variation
- Uneconomical repairing

<u>www.vishaldevdhar.org</u>

Capacitor Banks Calculations for Power Factor Improvement

After power factor correction:Current,

- *I'* < *I*
- Active Power,
 - $I\cos \phi_1 = I'\cos \phi_2$
- Lagging reactive Component
 - $I' \sin \phi_2 = I \sin \phi_1 I_C$
 - $VI' \sin \phi_2 = VI \sin \phi_1 VI_C$

•
$$X_C = \frac{V}{I_C} \Rightarrow \frac{1}{\omega C} = \frac{V}{I_C} \Rightarrow C = \frac{I_C}{\omega V}$$

 $\omega = 2\pi f$

• $I_C = 2\pi f C V$

 $P = VI \cos \phi$

•
$$I_C = I \sin \emptyset$$

 $I = \frac{P}{V \cos \emptyset}$

•
$$2\pi f C V = I \sqrt{1 - \cos^2 \phi}$$

 $2\pi f CV = I \sin \emptyset$

•
$$C = \frac{l}{2\pi f V} \sqrt{1 - \cos^2 \phi}$$

•
$$C = \frac{P}{2\pi f V^2 \cos \phi} \sqrt{1 - \cos^2 \phi}$$

•
$$C = \frac{P}{2\pi f V^2} \sqrt{\frac{1}{\cos^2 \phi} - 1}$$

Capacitor Banks Calculations for Power Factor Improvement

Leading kVAR Supplied by capacitor, BC = AB - AC

 $= kVAR_1 - kVAR_2$

- $= kW(tan \emptyset_1 tan \emptyset_2)$
- \therefore kVAR = kW tan \emptyset

Synchronous condensers

Advantages

• Motor current magnitude

can be controlled by

excitation

- High thermal stability
- Smooth pf control
- Easy fault removal

A synchronous motor takes a leading current when over-excited and, therefore, behaves as a capacitor. An over-excited synchronous motor running on no load is known as synchronous condenser.

Disadvantages

- High losses in Motor
- High maintenance cost
- No self starting
- Produces noise
- Economical above
 - 500kVA rating

- Lagging kvar drawn by the motor is less
- Conveniently used where the use of synchronous motors is inadmissible

- Not economical for motors
 - below 200 H.P.

Comparison : Capacitor Banks – Synchronous Condenser

Capacitor Banks

- Low capital cost
- Constant PF
- Complex to vary capacitance
- Low maintenance

Synchronous Condensers

- High capital cost
- PF can be varied smoothly
- By varying excitation PF can be

changed

High maintenance

Location of Power Factor correction equipment

- Power factor correction equipment is typically installed near the electrical load that is causing the low power factor
- In larger industrial facilities, power factor correction equipment may be installed in a centralized location

